
Design elements of the FreeBSD VM
system


This document is outdated and some sections do not accurately describe the
current state of the VM system. It is retained for historical purposes and may be
updated over time.

Abstract

Matthew Dillon <dillon@apollo.backplane.com>

The title is really just a fancy way of saying that I am going to attempt to describe the whole VM
enchilada, hopefully in a way that everyone can follow. For the last year I have concentrated on a
number of major kernel subsystems within FreeBSD, with the VM and Swap subsystems being the
most interesting and NFS being "a necessary chore". I rewrote only small portions of the code. In
the VM arena the only major rewrite I have done is to the swap subsystem. Most of my work was
cleanup and maintenance, with only moderate code rewriting and no major algorithmic
adjustments within the VM subsystem. The bulk of the VM subsystem’s theoretical base remains
unchanged and a lot of the credit for the modernization effort in the last few years belongs to John
Dyson and David Greenman. Not being a historian like Kirk I will not attempt to tag all the various
features with peoples names, since I will invariably get it wrong.

1. Introduction
Before moving along to the actual design let’s spend a little time on the necessity of maintaining
and modernizing any long-living codebase. In the programming world, algorithms tend to be more
important than code and it is precisely due to BSD’s academic roots that a great deal of attention
was paid to algorithm design from the beginning. More attention paid to the design generally leads
to a clean and flexible codebase that can be fairly easily modified, extended, or replaced over time.

Table of Contents
1. Introduction. 1

2. VM Objects . 2

3. SWAP Layers . 5

4. When to free a page . 6

5. Pre-Faulting and Zeroing Optimizations. 7

6. Page Table Optimizations . 8

7. Conclusion . 8

8. Bonus QA session by Allen Briggs. 8

1

mailto:dillon@apollo.backplane.com

While BSD is considered an "old" operating system by some people, those of us who work on it tend
to view it more as a "mature" codebase which has various components modified, extended, or
replaced with modern code. It has evolved, and FreeBSD is at the bleeding edge no matter how old
some of the code might be. This is an important distinction to make and one that is unfortunately
lost to many people. The biggest error a programmer can make is to not learn from history, and this
is precisely the error that many other modern operating systems have made. Windows NT® is the
best example of this, and the consequences have been dire. Linux also makes this mistake to some
degree-enough that we BSD folk can make small jokes about it every once in a while, anyway.
Linux’s problem is simply one of a lack of experience and history to compare ideas against, a
problem that is easily and rapidly being addressed by the Linux community in the same way it has
been addressed in the BSD community-by continuous code development. The Windows NT® folk,
on the other hand, repeatedly make the same mistakes solved by UNIX® decades ago and then
spend years fixing them. Over and over again. They have a severe case of "not designed here" and
"we are always right because our marketing department says so". I have little tolerance for anyone
who cannot learn from history.

Much of the apparent complexity of the FreeBSD design, especially in the VM/Swap subsystem, is a
direct result of having to solve serious performance issues that occur under various conditions.
These issues are not due to bad algorithmic design but instead rise from environmental factors. In
any direct comparison between platforms, these issues become most apparent when system
resources begin to get stressed. As I describe FreeBSD’s VM/Swap subsystem the reader should
always keep two points in mind:

1. The most important aspect of performance design is what is known as "Optimizing the Critical
Path". It is often the case that performance optimizations add a little bloat to the code to make
the critical path perform better.

2. A solid, generalized design outperforms a heavily-optimized design over the long run. While a
generalized design may end up being slower than an heavily-optimized design when they are
first implemented, the generalized design tends to be easier to adapt to changing conditions and
the heavily-optimized design winds up having to be thrown away.

Any codebase that will survive and be maintainable for years must therefore be designed properly
from the beginning even if it costs some performance. Twenty years ago people were still arguing
that programming in assembly was better than programming in a high-level language because it
produced code that was ten times as fast. Today, the fallibility of that argument is obvious - as are
the parallels to algorithmic design and code generalization.

2. VM Objects
The best way to begin describing the FreeBSD VM system is to look at it from the perspective of a
user-level process. Each user process sees a single, private, contiguous VM address space containing
several types of memory objects. These objects have various characteristics. Program code and
program data are effectively a single memory-mapped file (the binary file being run), but program
code is read-only while program data is copy-on-write. Program BSS is just memory allocated and
filled with zeros on demand, called demand zero page fill. Arbitrary files can be memory-mapped
into the address space as well, which is how the shared library mechanism works. Such mappings
can require modifications to remain private to the process making them. The fork system call adds

2

an entirely new dimension to the VM management problem on top of the complexity already given.

A program binary data page (which is a basic copy-on-write page) illustrates the complexity. A
program binary contains a preinitialized data section which is initially mapped directly from the
program file. When a program is loaded into a process’s VM space, this area is initially memory-
mapped and backed by the program binary itself, allowing the VM system to free/reuse the page
and later load it back in from the binary. The moment a process modifies this data, however, the
VM system must make a private copy of the page for that process. Since the private copy has been
modified, the VM system may no longer free it, because there is no longer any way to restore it later
on.

You will notice immediately that what was originally a simple file mapping has become much more
complex. Data may be modified on a page-by-page basis whereas the file mapping encompasses
many pages at once. The complexity further increases when a process forks. When a process forks,
the result is two processes-each with their own private address spaces, including any modifications
made by the original process prior to the call to fork(). It would be silly for the VM system to make
a complete copy of the data at the time of the fork() because it is quite possible that at least one of
the two processes will only need to read from that page from then on, allowing the original page to
continue to be used. What was a private page is made copy-on-write again, since each process
(parent and child) expects their own personal post-fork modifications to remain private to
themselves and not affect the other.

FreeBSD manages all of this with a layered VM Object model. The original binary program file
winds up being the lowest VM Object layer. A copy-on-write layer is pushed on top of that to hold
those pages which had to be copied from the original file. If the program modifies a data page
belonging to the original file the VM system takes a fault and makes a copy of the page in the higher
layer. When a process forks, additional VM Object layers are pushed on. This might make a little
more sense with a fairly basic example. A fork() is a common operation for any *BSD system, so
this example will consider a program that starts up, and forks. When the process starts, the VM
system creates an object layer, let’s call this A:

A represents the file-pages may be paged in and out of the file’s physical media as necessary. Paging
in from the disk is reasonable for a program, but we really do not want to page back out and
overwrite the executable. The VM system therefore creates a second layer, B, that will be physically
backed by swap space:

3

On the first write to a page after this, a new page is created in B, and its contents are initialized
from A. All pages in B can be paged in or out to a swap device. When the program forks, the VM
system creates two new object layers-C1 for the parent, and C2 for the child-that rest on top of B:

In this case, let’s say a page in B is modified by the original parent process. The process will take a
copy-on-write fault and duplicate the page in C1, leaving the original page in B untouched. Now,
let’s say the same page in B is modified by the child process. The process will take a copy-on-write
fault and duplicate the page in C2. The original page in B is now completely hidden since both C1
and C2 have a copy and B could theoretically be destroyed if it does not represent a "real" file;
however, this sort of optimization is not trivial to make because it is so fine-grained. FreeBSD does
not make this optimization. Now, suppose (as is often the case) that the child process does an exec().
Its current address space is usually replaced by a new address space representing a new file. In this
case, the C2 layer is destroyed:

In this case, the number of children of B drops to one, and all accesses to B now go through C1. This
means that B and C1 can be collapsed together. Any pages in B that also exist in C1 are deleted from
B during the collapse. Thus, even though the optimization in the previous step could not be made,
we can recover the dead pages when either of the processes exit or exec().

This model creates a number of potential problems. The first is that you can wind up with a
relatively deep stack of layered VM Objects which can cost scanning time and memory when you
take a fault. Deep layering can occur when processes fork and then fork again (either parent or
child). The second problem is that you can wind up with dead, inaccessible pages deep in the stack
of VM Objects. In our last example if both the parent and child processes modify the same page,
they both get their own private copies of the page and the original page in B is no longer accessible
by anyone. That page in B can be freed.

4

FreeBSD solves the deep layering problem with a special optimization called the "All Shadowed
Case". This case occurs if either C1 or C2 take sufficient COW faults to completely shadow all pages
in B. Lets say that C1 achieves this. C1 can now bypass B entirely, so rather then have C1→B→A and
C2→B→A we now have C1→A and C2→B→A. But look what also happened-now B has only one
reference (C2), so we can collapse B and C2 together. The end result is that B is deleted entirely and
we have C1→A and C2→A. It is often the case that B will contain a large number of pages and
neither C1 nor C2 will be able to completely overshadow it. If we fork again and create a set of D
layers, however, it is much more likely that one of the D layers will eventually be able to completely
overshadow the much smaller dataset represented by C1 or C2. The same optimization will work at
any point in the graph and the grand result of this is that even on a heavily forked machine VM
Object stacks tend to not get much deeper then 4. This is true of both the parent and the children
and true whether the parent is doing the forking or whether the children cascade forks.

The dead page problem still exists in the case where C1 or C2 do not completely overshadow B. Due
to our other optimizations this case does not represent much of a problem and we simply allow the
pages to be dead. If the system runs low on memory it will swap them out, eating a little swap, but
that is it.

The advantage to the VM Object model is that fork() is extremely fast, since no real data copying
need take place. The disadvantage is that you can build a relatively complex VM Object layering
that slows page fault handling down a little, and you spend memory managing the VM Object
structures. The optimizations FreeBSD makes proves to reduce the problems enough that they can
be ignored, leaving no real disadvantage.

3. SWAP Layers
Private data pages are initially either copy-on-write or zero-fill pages. When a change, and
therefore a copy, is made, the original backing object (usually a file) can no longer be used to save a
copy of the page when the VM system needs to reuse it for other purposes. This is where SWAP
comes in. SWAP is allocated to create backing store for memory that does not otherwise have it.
FreeBSD allocates the swap management structure for a VM Object only when it is actually needed.
However, the swap management structure has had problems historically:

• Under FreeBSD 3.X the swap management structure preallocates an array that encompasses the
entire object requiring swap backing store-even if only a few pages of that object are swap-
backed. This creates a kernel memory fragmentation problem when large objects are mapped,
or processes with large runsizes (RSS) fork.

• Also, to keep track of swap space, a "list of holes" is kept in kernel memory, and this tends to get
severely fragmented as well. Since the "list of holes" is a linear list, the swap allocation and
freeing performance is a non-optimal O(n)-per-page.

• It requires kernel memory allocations to take place during the swap freeing process, and that
creates low memory deadlock problems.

• The problem is further exacerbated by holes created due to the interleaving algorithm.

• Also, the swap block map can become fragmented fairly easily resulting in non-contiguous
allocations.

• Kernel memory must also be allocated on the fly for additional swap management structures

5

when a swapout occurs.

It is evident from that list that there was plenty of room for improvement. For FreeBSD 4.X, I
completely rewrote the swap subsystem:

• Swap management structures are allocated through a hash table rather than a linear array
giving them a fixed allocation size and much finer granularity.

• Rather then using a linearly linked list to keep track of swap space reservations, it now uses a
bitmap of swap blocks arranged in a radix tree structure with free-space hinting in the radix
node structures. This effectively makes swap allocation and freeing an O(1) operation.

• The entire radix tree bitmap is also preallocated to avoid having to allocate kernel memory
during critical low memory swapping operations. After all, the system tends to swap when it is
low on memory so we should avoid allocating kernel memory at such times to avoid potential
deadlocks.

• To reduce fragmentation the radix tree is capable of allocating large contiguous chunks at once,
skipping over smaller fragmented chunks.

I did not take the final step of having an "allocating hint pointer" that would trundle through a
portion of swap as allocations were made to further guarantee contiguous allocations or at least
locality of reference, but I ensured that such an addition could be made.

4. When to free a page
Since the VM system uses all available memory for disk caching, there are usually very few truly-
free pages. The VM system depends on being able to properly choose pages which are not in use to
reuse for new allocations. Selecting the optimal pages to free is possibly the single-most important
function any VM system can perform because if it makes a poor selection, the VM system may be
forced to unnecessarily retrieve pages from disk, seriously degrading system performance.

How much overhead are we willing to suffer in the critical path to avoid freeing the wrong page?
Each wrong choice we make will cost us hundreds of thousands of CPU cycles and a noticeable stall
of the affected processes, so we are willing to endure a significant amount of overhead to be sure
that the right page is chosen. This is why FreeBSD tends to outperform other systems when memory
resources become stressed.

The free page determination algorithm is built upon a history of the use of memory pages. To
acquire this history, the system takes advantage of a page-used bit feature that most hardware page
tables have.

In any case, the page-used bit is cleared and at some later point the VM system comes across the
page again and sees that the page-used bit has been set. This indicates that the page is still being
actively used. If the bit is still clear it is an indication that the page is not being actively used. By
testing this bit periodically, a use history (in the form of a counter) for the physical page is
developed. When the VM system later needs to free up some pages, checking this history becomes
the cornerstone of determining the best candidate page to reuse.

For those platforms that do not have this feature, the system actually emulates a page-used bit. It

6

unmaps or protects a page, forcing a page fault if the page is accessed again. When the page fault is
taken, the system simply marks the page as having been used and unprotects the page so that it
may be used. While taking such page faults just to determine if a page is being used appears to be
an expensive proposition, it is much less expensive than reusing the page for some other purpose
only to find that a process needs it back and then have to go to disk.

FreeBSD makes use of several page queues to further refine the selection of pages to reuse as well
as to determine when dirty pages must be flushed to their backing store. Since page tables are
dynamic entities under FreeBSD, it costs virtually nothing to unmap a page from the address space
of any processes using it. When a page candidate has been chosen based on the page-use counter,
this is precisely what is done. The system must make a distinction between clean pages which can
theoretically be freed up at any time, and dirty pages which must first be written to their backing
store before being reusable. When a page candidate has been found it is moved to the inactive
queue if it is dirty, or the cache queue if it is clean. A separate algorithm based on the dirty-to-clean
page ratio determines when dirty pages in the inactive queue must be flushed to disk. Once this is
accomplished, the flushed pages are moved from the inactive queue to the cache queue. At this
point, pages in the cache queue can still be reactivated by a VM fault at relatively low cost.
However, pages in the cache queue are considered to be "immediately freeable" and will be reused
in an LRU (least-recently used) fashion when the system needs to allocate new memory.

It is important to note that the FreeBSD VM system attempts to separate clean and dirty pages for
the express reason of avoiding unnecessary flushes of dirty pages (which eats I/O bandwidth), nor
does it move pages between the various page queues gratuitously when the memory subsystem is
not being stressed. This is why you will see some systems with very low cache queue counts and
high active queue counts when doing a systat -vm command. As the VM system becomes more
stressed, it makes a greater effort to maintain the various page queues at the levels determined to
be the most effective.

An urban myth has circulated for years that Linux did a better job avoiding swapouts than
FreeBSD, but this in fact is not true. What was actually occurring was that FreeBSD was proactively
paging out unused pages to make room for more disk cache while Linux was keeping unused pages
in core and leaving less memory available for cache and process pages. I do not know whether this
is still true today.

5. Pre-Faulting and Zeroing Optimizations
Taking a VM fault is not expensive if the underlying page is already in core and can simply be
mapped into the process, but it can become expensive if you take a whole lot of them on a regular
basis. A good example of this is running a program such as ls(1) or ps(1) over and over again. If the
program binary is mapped into memory but not mapped into the page table, then all the pages that
will be accessed by the program will have to be faulted in every time the program is run. This is
unnecessary when the pages in question are already in the VM Cache, so FreeBSD will attempt to
pre-populate a process’s page tables with those pages that are already in the VM Cache. One thing
that FreeBSD does not yet do is pre-copy-on-write certain pages on exec. For example, if you run the
ls(1) program while running vmstat 1 you will notice that it always takes a certain number of page
faults, even when you run it over and over again. These are zero-fill faults, not program code faults
(which were pre-faulted in already). Pre-copying pages on exec or fork is an area that could use
more study.

7

https://man.freebsd.org/cgi/man.cgi?query=ls&sektion=1&format=html
https://man.freebsd.org/cgi/man.cgi?query=ps&sektion=1&format=html
https://man.freebsd.org/cgi/man.cgi?query=ls&sektion=1&format=html

A large percentage of page faults that occur are zero-fill faults. You can usually see this by
observing the vmstat -s output. These occur when a process accesses pages in its BSS area. The BSS
area is expected to be initially zero but the VM system does not bother to allocate any memory at all
until the process actually accesses it. When a fault occurs the VM system must not only allocate a
new page, it must zero it as well. To optimize the zeroing operation the VM system has the ability to
pre-zero pages and mark them as such, and to request pre-zeroed pages when zero-fill faults occur.
The pre-zeroing occurs whenever the CPU is idle but the number of pages the system pre-zeros is
limited to avoid blowing away the memory caches. This is an excellent example of adding
complexity to the VM system to optimize the critical path.

6. Page Table Optimizations
The page table optimizations make up the most contentious part of the FreeBSD VM design and they
have shown some strain with the advent of serious use of mmap(). I think this is actually a feature of
most BSDs though I am not sure when it was first introduced. There are two major optimizations.
The first is that hardware page tables do not contain persistent state but instead can be thrown
away at any time with only a minor amount of management overhead. The second is that every
active page table entry in the system has a governing pv_entry structure which is tied into the
vm_page structure. FreeBSD can simply iterate through those mappings that are known to exist while
Linux must check all page tables that might contain a specific mapping to see if it does, which can
achieve O(n^2) overhead in certain situations. It is because of this that FreeBSD tends to make
better choices on which pages to reuse or swap when memory is stressed, giving it better
performance under load. However, FreeBSD requires kernel tuning to accommodate large-shared-
address-space situations such as those that can occur in a news system because it may run out of
pv_entry structures.

Both Linux and FreeBSD need work in this area. FreeBSD is trying to maximize the advantage of a
potentially sparse active-mapping model (not all processes need to map all pages of a shared
library, for example), whereas Linux is trying to simplify its algorithms. FreeBSD generally has the
performance advantage here at the cost of wasting a little extra memory, but FreeBSD breaks down
in the case where a large file is massively shared across hundreds of processes. Linux, on the other
hand, breaks down in the case where many processes are sparsely-mapping the same shared
library and also runs non-optimally when trying to determine whether a page can be reused or not.

7. Conclusion
Virtual memory in modern operating systems must address a number of different issues efficiently
and for many different usage patterns. The modular and algorithmic approach that BSD has
historically taken allows us to study and understand the current implementation as well as
relatively cleanly replace large sections of the code. There have been a number of improvements to
the FreeBSD VM system in the last several years, and work is ongoing.

8. Bonus QA session by Allen Briggs

8

8.1. What is the interleaving algorithm that you refer
to in your listing of the ills of the FreeBSD 3.X swap
arrangements?
FreeBSD uses a fixed swap interleave which defaults to 4. This means that FreeBSD reserves space
for four swap areas even if you only have one, two, or three. Since swap is interleaved the linear
address space representing the "four swap areas" will be fragmented if you do not actually have
four swap areas. For example, if you have two swap areas A and B FreeBSD’s address space
representation for that swap area will be interleaved in blocks of 16 pages:

A B C D A B C D A B C D A B C D

FreeBSD 3.X uses a "sequential list of free regions" approach to accounting for the free swap areas.
The idea is that large blocks of free linear space can be represented with a single list node
(kern/subr_rlist.c). But due to the fragmentation the sequential list winds up being insanely
fragmented. In the above example, completely unused swap will have A and B shown as "free" and
C and D shown as "all allocated". Each A-B sequence requires a list node to account for because C
and D are holes, so the list node cannot be combined with the next A-B sequence.

Why do we interleave our swap space instead of just tack swap areas onto the end and do
something fancier? It is a whole lot easier to allocate linear swaths of an address space and have
the result automatically be interleaved across multiple disks than it is to try to put that
sophistication elsewhere.

The fragmentation causes other problems. Being a linear list under 3.X, and having such a huge
amount of inherent fragmentation, allocating and freeing swap winds up being an O(N) algorithm
instead of an O(1) algorithm. Combined with other factors (heavy swapping) and you start getting
into O(N^2) and O(N^3) levels of overhead, which is bad. The 3.X system may also need to allocate
KVM during a swap operation to create a new list node which can lead to a deadlock if the system is
trying to pageout pages in a low-memory situation.

Under 4.X we do not use a sequential list. Instead we use a radix tree and bitmaps of swap blocks
rather than ranged list nodes. We take the hit of preallocating all the bitmaps required for the
entire swap area up front but it winds up wasting less memory due to the use of a bitmap (one bit
per block) instead of a linked list of nodes. The use of a radix tree instead of a sequential list gives
us nearly O(1) performance no matter how fragmented the tree becomes.

9

8.2. How is the separation of clean and dirty (inactive)
pages related to the situation where you see low cache
queue counts and high active queue counts in systat
-vm? Do the systat stats roll the active and dirty pages
together for the active queue count?
Yes, that is confusing. The relationship is "goal" verses "reality". Our goal is to separate the pages but
the reality is that if we are not in a memory crunch, we do not really have to.

What this means is that FreeBSD will not try very hard to separate out dirty pages (inactive queue)
from clean pages (cache queue) when the system is not being stressed, nor will it try to deactivate
pages (active queue → inactive queue) when the system is not being stressed, even if they are not
being used.

8.3. In ls(1) the / vmstat 1 example, would not some of
the page faults be data page faults (COW from
executable file to private page)? I.e., I would expect
the page faults to be some zero-fill and some program
data. Or are you implying that FreeBSD does do pre-
COW for the program data?
A COW fault can be either zero-fill or program-data. The mechanism is the same either way because
the backing program-data is almost certainly already in the cache. I am indeed lumping the two
together. FreeBSD does not pre-COW program data or zero-fill, but it does pre-map pages that exist
in its cache.

8.4. In your section on page table optimizations, can
you give a little more detail about pv_entry and
vm_page (or should vm_page be vm_pmap-as in 4.4, cf.
pp. 180-181 of McKusick, Bostic, Karel, Quarterman)?
Specifically, what kind of operation/reaction would
require scanning the mappings?
A vm_page represents an (object,index#) tuple. A pv_entry represents a hardware page table entry
(pte). If you have five processes sharing the same physical page, and three of those processes’s page
tables actually map the page, that page will be represented by a single vm_page structure and three
pv_entry structures.

pv_entry structures only represent pages mapped by the MMU (one pv_entry represents one pte).

10

https://man.freebsd.org/cgi/man.cgi?query=ls&sektion=1&format=html

This means that when we need to remove all hardware references to a vm_page (to reuse the page
for something else, page it out, clear it, dirty it, and so forth) we can simply scan the linked list of
pv_entry’s associated with that vm_page to remove or modify the pte’s from their page tables.

Under Linux there is no such linked list. To remove all the hardware page table mappings for a
vm_page linux must index into every VM object that might have mapped the page. For example, if
you have 50 processes all mapping the same shared library and want to get rid of page X in that
library, you need to index into the page table for each of those 50 processes even if only 10 of them
have actually mapped the page. So Linux is trading off the simplicity of its design against
performance. Many VM algorithms which are O(1) or (small N) under FreeBSD wind up being O(N),
O(N^2), or worse under Linux. Since the pte’s representing a particular page in an object tend to be
at the same offset in all the page tables they are mapped in, reducing the number of accesses into
the page tables at the same pte offset will often avoid blowing away the L1 cache line for that offset,
which can lead to better performance.

FreeBSD has added complexity (the pv_entry scheme) to increase performance (to limit page table
accesses to only those pte’s that need to be modified).

But FreeBSD has a scaling problem that Linux does not in that there are a limited number of
pv_entry structures and this causes problems when you have massive sharing of data. In this case
you may run out of pv_entry structures even though there is plenty of free memory available. This
can be fixed easily enough by bumping up the number of pv_entry structures in the kernel config,
but we really need to find a better way to do it.

In regards to the memory overhead of a page table verses the pv_entry scheme: Linux uses
"permanent" page tables that are not throw away, but does not need a pv_entry for each potentially
mapped pte. FreeBSD uses "throw away" page tables but adds in a pv_entry structure for each
actually-mapped pte. I think memory utilization winds up being about the same, giving FreeBSD an
algorithmic advantage with its ability to throw away page tables at will with very low overhead.

11

	Design elements of the FreeBSD VM system
	Table of Contents
	1. Introduction
	2. VM Objects
	3. SWAP Layers
	4. When to free a page
	5. Pre-Faulting and Zeroing Optimizations
	6. Page Table Optimizations
	7. Conclusion
	8. Bonus QA session by Allen Briggs

