Predictors can be converted to one or more numeric
representations using a variety of methods. Effect encodings using
simple generalized linear models <doi:10.48550/arXiv.1611.09477> or
nonlinear models <doi:10.48550/arXiv.1604.06737> can be used. There
are also functions for dimension reduction and other approaches.
| Version: |
1.1.5 |
| Depends: |
R (≥ 3.6), recipes (≥ 1.1.0) |
| Imports: |
cli, glue, dplyr (≥ 1.1.0), generics (≥ 0.1.0), lifecycle, purrr, rlang (≥ 1.1.0), rsample, stats, tibble, tidyr, utils, uwot, withr, vctrs |
| Suggests: |
covr, dials (≥ 1.2.0), ggplot2, hardhat, irlba, keras, knitr, lme4, modeldata, rmarkdown, rpart, rstanarm, stringdist, tensorflow, testthat (≥ 3.0.0), VBsparsePCA, xgboost |
| Published: |
2025-01-23 |
| DOI: |
10.32614/CRAN.package.embed |
| Author: |
Emil Hvitfeldt
[aut, cre],
Max Kuhn [aut],
Posit Software, PBC [cph, fnd] |
| Maintainer: |
Emil Hvitfeldt <emil.hvitfeldt at posit.co> |
| BugReports: |
https://github.com/tidymodels/embed/issues |
| License: |
MIT + file LICENSE |
| URL: |
https://embed.tidymodels.org, https://github.com/tidymodels/embed |
| NeedsCompilation: |
no |
| Materials: |
NEWS |
| CRAN checks: |
embed results |