
Package ‘Boruta’
July 21, 2025

Title Wrapper Algorithm for All Relevant Feature Selection

Version 8.0.0

Imports ranger

Suggests mlbench, rFerns, randomForest, testthat, xgboost, survival

Description An all relevant feature selection wrapper algorithm.
It finds relevant features by comparing original attributes' importance with importance achiev-
able at random, estimated using their permuted copies (shadows).

BugReports https://gitlab.com/mbq/Boruta/-/issues

License GPL (>= 2)

URL https://gitlab.com/mbq/Boruta/

RoxygenNote 7.2.1

Encoding UTF-8

NeedsCompilation no

Author Miron Bartosz Kursa [aut, cre] (ORCID:
<https://orcid.org/0000-0001-7672-648X>),

Witold Remigiusz Rudnicki [aut]

Maintainer Miron Bartosz Kursa <M.Kursa@icm.edu.pl>

Repository CRAN

Date/Publication 2022-11-12 08:30:16 UTC

Contents
attStats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
Boruta . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
conditionalTransdapter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
decohereTransdapter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
getConfirmedFormula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
getImpExtra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
getImpFerns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
getImpLegacyRf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1

https://gitlab.com/mbq/Boruta/-/issues
https://gitlab.com/mbq/Boruta/
https://orcid.org/0000-0001-7672-648X


2 attStats

getImpRf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
getImpXgboost . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
getSelectedAttributes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
imputeTransdapter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
plot.Boruta . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
plotImpHistory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
print.Boruta . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
srx . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
TentativeRoughFix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

Index 19

attStats Extract attribute statistics

Description

attStats shows a summary of a Boruta run in an attribute-centred way. It produces a data frame
containing some importance stats as well as the number of hits that attribute scored and the decision
it was given.

Usage

attStats(x)

Arguments

x an object of a class Boruta, from which attribute stats should be extracted.

Value

A data frame containing, for each attribute that was originally in information system, mean, median,
maximal and minimal importance, number of hits normalised to number of importance source runs
performed and the decision copied from finalDecision.

Note

When using a Boruta object generated by a TentativeRoughFix, the resulting data frame will
consist a rough-fixed decision.

x has to be made with holdHistory set to TRUE for this code to run.

Examples

## Not run:
library(mlbench); data(Sonar)
#Takes some time, so be patient
Boruta(Class~.,data=Sonar,doTrace=2)->Bor.son
print(Bor.son)
stats<-attStats(Bor.son)



Boruta 3

print(stats)
plot(normHits~meanImp,col=stats$decision,data=stats)

## End(Not run)

Boruta Feature selection with the Boruta algorithm

Description

Boruta is an all relevant feature selection wrapper algorithm, capable of working with any classi-
fication method that output variable importance measure (VIM); by default, Boruta uses Random
Forest. The method performs a top-down search for relevant features by comparing original at-
tributes’ importance with importance achievable at random, estimated using their permuted copies,
and progressively eliminating irrelevant features to stabilise that test.

Usage

Boruta(x, ...)

## Default S3 method:
Boruta(

x,
y,
pValue = 0.01,
mcAdj = TRUE,
maxRuns = 100,
doTrace = 0,
holdHistory = TRUE,
getImp = getImpRfZ,
...

)

## S3 method for class 'formula'
Boruta(formula, data, ...)

Arguments

x data frame of predictors.

... additional parameters passed to getImp.

y response vector; factor for classification, numeric vector for regression, Surv
object for survival (supports depends on importance adapter capabilities).

pValue confidence level. Default value should be used.

mcAdj if set to TRUE, a multiple comparisons adjustment using the Bonferroni method
will be applied. Default value should be used; older (1.x and 2.x) versions of
Boruta were effectively using FALSE.



4 Boruta

maxRuns maximal number of importance source runs. You may increase it to resolve
attributes left Tentative.

doTrace verbosity level. 0 means no tracing, 1 means reporting decision about each
attribute as soon as it is justified, 2 means the same as 1, plus reporting each
importance source run, 3 means the same as 2, plus reporting of hits assigned to
yet undecided attributes.

holdHistory if set to TRUE, the full history of importance is stored and returned as the ImpHistory
element of the result. Can be used to decrease a memory footprint of Boruta
in case this side data is not used, especially when the number of attributes is
huge; yet it disables plotting of such made Boruta objects and the use of the
TentativeRoughFix function.

getImp function used to obtain attribute importance. The default is getImpRfZ, which
runs random forest from the ranger package and gathers Z-scores of mean de-
crease accuracy measure. It should return a numeric vector of a size identical to
the number of columns of its first argument, containing importance measure of
respective attributes. Any order-preserving transformation of this measure will
yield the same result. It is assumed that more important attributes get higher im-
portance. +-Inf are accepted, NaNs and NAs are treated as 0s, with a warning.

formula alternatively, formula describing model to be analysed.
data in which to interpret formula.

Details

Boruta iteratively compares importances of attributes with importances of shadow attributes, created
by shuffling original ones. Attributes that have significantly worst importance than shadow ones are
being consecutively dropped. On the other hand, attributes that are significantly better than shadows
are admitted to be Confirmed. Shadows are re-created in each iteration. Algorithm stops when only
Confirmed attributes are left, or when it reaches maxRuns importance source runs. If the second
scenario occurs, some attributes may be left without a decision. They are claimed Tentative. You
may try to extend maxRuns or lower pValue to clarify them, but in some cases their importances
do fluctuate too much for Boruta to converge. Instead, you can use TentativeRoughFix function,
which will perform other, weaker test to make a final decision, or simply treat them as undecided in
further analysis.

Value

An object of class Boruta, which is a list with the following components:

finalDecision a factor of three value: Confirmed, Rejected or Tentative, containing final
result of feature selection.

ImpHistory a data frame of importances of attributes gathered in each importance source run.
Beside predictors’ importances, it contains maximal, mean and minimal impor-
tance of shadow attributes in each run. Rejected attributes get -Inf importance.
Set to NULL if holdHistory was given FALSE.

timeTaken time taken by the computation.
impSource string describing the source of importance, equal to a comment attribute of the

getImp argument.
call the original call of the Boruta function.



Boruta 5

References

Miron B. Kursa, Witold R. Rudnicki (2010). Feature Selection with the Boruta Package. Journal
of Statistical Software, 36(11), p. 1-13. URL: doi:10.18637/jss.v036.i11

Examples

set.seed(777)

#Boruta on the "small redundant XOR" problem; read ?srx for details
data(srx)
Boruta(Y~.,data=srx)->Boruta.srx

#Results summary
print(Boruta.srx)

#Result plot
plot(Boruta.srx)

#Attribute statistics
attStats(Boruta.srx)

#Using alternative importance source, rFerns
Boruta(Y~.,data=srx,getImp=getImpFerns)->Boruta.srx.ferns
print(Boruta.srx.ferns)

#Verbose
Boruta(Y~.,data=srx,doTrace=2)->Boruta.srx

## Not run:
#Boruta on the iris problem extended with artificial irrelevant features
#Generate said features
iris.extended<-data.frame(iris,apply(iris[,-5],2,sample))
names(iris.extended)[6:9]<-paste("Nonsense",1:4,sep="")
#Run Boruta on this data
Boruta(Species~.,data=iris.extended,doTrace=2)->Boruta.iris.extended
#Nonsense attributes should be rejected
print(Boruta.iris.extended)

## End(Not run)

## Not run:
#Boruta on the HouseVotes84 data from mlbench
library(mlbench); data(HouseVotes84)
na.omit(HouseVotes84)->hvo
#Takes some time, so be patient
Boruta(Class~.,data=hvo,doTrace=2)->Bor.hvo
print(Bor.hvo)
plot(Bor.hvo)
plotImpHistory(Bor.hvo)

## End(Not run)
## Not run:

https://doi.org/10.18637/jss.v036.i11


6 conditionalTransdapter

#Boruta on the Ozone data from mlbench
library(mlbench); data(Ozone)
library(randomForest)
na.omit(Ozone)->ozo
Boruta(V4~.,data=ozo,doTrace=2)->Bor.ozo
cat('Random forest run on all attributes:\n')
print(randomForest(V4~.,data=ozo))
cat('Random forest run only on confirmed attributes:\n')
print(randomForest(ozo[,getSelectedAttributes(Bor.ozo)],ozo$V4))

## End(Not run)
## Not run:
#Boruta on the Sonar data from mlbench
library(mlbench); data(Sonar)
#Takes some time, so be patient
Boruta(Class~.,data=Sonar,doTrace=2)->Bor.son
print(Bor.son)
#Shows important bands
plot(Bor.son,sort=FALSE)

## End(Not run)

conditionalTransdapter

Conditional transdapter

Description

Applies downstream importance source on a given object strata and averages their outputs.

Usage

conditionalTransdapter(groups, adapter = getImpRfZ)

Arguments

groups groups.

adapter importance adapter to transform.

Value

transformed importance adapter which can be fed into getImp argument of the Boruta function.



decohereTransdapter 7

decohereTransdapter Decohere transdapter

Description

Applies the decoherence transformation to the input, destroying all multivariate interactions. It will
trash the Boruta result, only apply if you know what are you doing! Works only for categorical
decision.

Usage

decohereTransdapter(adapter = getImpRfZ)

Arguments

adapter importance adapter to transform.

Value

transformed importance adapter which can be fed into getImp argument of the Boruta function.

Examples

set.seed(777)
# SRX data only contains multivariate interactions
data(srx)
# Decoherence transform removes them all,
# leaving no confirmed features
Boruta(Y~.,data=srx,getImp=decohereTransdapter())

getConfirmedFormula Export Boruta result as a formula

Description

Functions which convert the Boruta selection into a formula, so that it could be passed further to
other functions.

Usage

getConfirmedFormula(x)

getNonRejectedFormula(x)

Arguments

x an object of a class Boruta, made using a formula interface.



8 getImpExtra

Value

Formula, corresponding to the Boruta results. getConfirmedFormula returns only Confirmed at-
tributes, getNonRejectedFormula also adds Tentative ones.

Note

This operation is possible only when Boruta selection was invoked using a formula interface.

getImpExtra ranger Extra-trees importance adapters

Description

Those function is intended to be given to a getImp argument of Boruta function to be called by the
Boruta algorithm as an importance source. getImpExtraZ generates default, normalized permuta-
tion importance, getImpExtraRaw raw permutation importance, finally getImpExtraGini gener-
ates Gini impurity importance.

Usage

getImpExtraZ(x, y, ntree = 500, num.trees = ntree, ...)

getImpExtraGini(x, y, ntree = 500, num.trees = ntree, ...)

getImpExtraRaw(x, y, ntree = 500, num.trees = ntree, ...)

Arguments

x data frame of predictors including shadows.

y response vector.

ntree Number of trees in the forest; copied into ranger’s native num.trees, put to
retain transparent compatibility with randomForest.

num.trees Number of trees in the forest, as according to ranger’s nomenclature. If not
given, set to ntree value. If both are given, num.trees takes precedence.

... parameters passed to the underlying ranger call; they are relayed from ... of
Boruta. Note that these function work just by setting splitrule to "extratrees".



getImpFerns 9

getImpFerns Random Ferns importance

Description

This function is intended to be given to a getImp argument of Boruta function to be called by the
Boruta algorithm as an importance source.

Usage

getImpFerns(x, y, ...)

Arguments

x data frame of predictors including shadows.

y response vector.

... parameters passed to the underlying rFerns call; they are relayed from ... of
Boruta.

Note

Random Ferns importance calculation should be much faster than using Random Forest; however,
one must first optimize the value of the depth parameter and it is quite likely that the number of
ferns in the ensemble required for the importance to converge will be higher than the number of
trees in case of Random Forest.

getImpLegacyRf randomForest importance adapters

Description

Those function is intended to be given to a getImp argument of Boruta function to be called by the
Boruta algorithm as an importance source. getImpLegacyRfZ generates default, normalized permu-
tation importance, getImpLegacyRfRaw raw permutation importance, finally getImpLegacyRfGini
generates Gini index importance, all using randomForest as a Random Forest algorithm implemen-
tation.

Usage

getImpLegacyRfZ(x, y, ...)

getImpLegacyRfRaw(x, y, ...)

getImpLegacyRfGini(x, y, ...)



10 getImpRf

Arguments

x data frame of predictors including shadows.

y response vector.

... parameters passed to the underlying randomForest call; they are relayed from
... of Boruta.

Note

The getImpLegacyRfZ function was a default importance source in Boruta versions prior to 5.0;
since then ranger Random Forest implementation is used instead of randomForest, for speed,
memory conservation and an ability to utilise multithreading. Both importance sources should
generally lead to the same results, yet there are differences.

Most notably, ranger by default treats factor attributes as ordered (and works very slow if instructed
otherwise with respect.unordered.factors=TRUE); on the other hand it lifts 32 levels limit spe-
cific to randomForest. To this end, Boruta decision for factor attributes may be different.

Random Forest methods has two main parameters, number of attributes tried at each split and the
number of trees in the forest; first one is called mtry in both implementations, but the second ntree
in randomForest and num.trees in ranger. To this end, to maintain compatibility, getImpRf*
functions still accept ntree parameter relaying it into num.trees. Still, both parameters take the
same defaults in both implementations (square root of the number all all attributes and 500 respec-
tively).

Moreover, ranger brings some addition capabilities to Boruta, like analysis of survival problems or
sticky variables which are always considered on splits.

Finally, the results for the same PRNG seed will be different.

Examples

set.seed(777)
#Add some nonsense attributes to iris dataset by shuffling original attributes
iris.extended<-data.frame(iris,apply(iris[,-5],2,sample))
names(iris.extended)[6:9]<-paste("Nonsense",1:4,sep="")
#Run Boruta on this data
Boruta(Species~.,getImp=getImpLegacyRfZ,
data=iris.extended,doTrace=2)->Boruta.iris.extended
#Nonsense attributes should be rejected
print(Boruta.iris.extended)

getImpRf ranger Random Forest importance adapters

Description

Those function is intended to be given to a getImp argument of Boruta function to be called by the
Boruta algorithm as an importance source. getImpRfZ generates default, normalized permutation
importance, getImpRfRaw raw permutation importance, finally getImpRfGini generates Gini index
importance.



getImpXgboost 11

Usage

getImpRfZ(x, y, ntree = 500, num.trees = ntree, ...)

getImpRfGini(x, y, ntree = 500, num.trees = ntree, ...)

getImpRfRaw(x, y, ntree = 500, num.trees = ntree, ...)

Arguments

x data frame of predictors including shadows.
y response vector.
ntree Number of trees in the forest; copied into ranger’s native num.trees, put to

retain transparent compatibility with randomForest.
num.trees Number of trees in the forest, as according to ranger’s nomenclature. If not

given, set to ntree value. If both are given, num.trees takes precedence.
... parameters passed to the underlying ranger call; they are relayed from ... of

Boruta.

Note

Prior to Boruta 5.0, getImpLegacyRfZ function was a default importance source in Boruta; see
getImpLegacyRf for more details.

getImpXgboost Xgboost importance

Description

This function is intended to be given to a getImp argument of Boruta function to be called by the
Boruta algorithm as an importance source. This functionality is inspired by the Python package
BoostARoota by Chase DeHan. In practice, due to the eager way XgBoost works, this adapter
changes Boruta into minimal optimal method, hence I strongly recommend against using this.

Usage

getImpXgboost(x, y, nrounds = 5, verbose = 0, ...)

Arguments

x data frame of predictors including shadows.
y response vector.
nrounds Number of rounds; passed to the underlying xgboost call.
verbose Verbosity level of xgboost; either 0 (silent) or 1 (progress reports). Passed to the

underlying xgboost call.
... other parameters passed to the underlying xgboost call. Similarly as nrounds

and verbose, they are relayed from ... of Boruta. For convenience, this func-
tion sets nrounds to 5 and verbose to 0, but this can be overridden.



12 getSelectedAttributes

Note

Only dense matrix interface is supported; all predictions given to Boruta call have to be numeric
(not integer). Categorical features should be split into indicator attributes.

References

https://github.com/chasedehan/BoostARoota

getSelectedAttributes Extract names of the selected attributes

Description

getSelectedAttributes returns a vector of names of attributes selected during a Boruta run.

Usage

getSelectedAttributes(x, withTentative = FALSE)

Arguments

x an object of a class Boruta, from which relevant attributes names should be
extracted.

withTentative if set to TRUE, Tentative attributes will be also returned.

Value

A character vector with names of the relevant attributes.

Examples

## Not run:
data(iris)
#Takes some time, so be patient
Boruta(Species~.,data=iris,doTrace=2)->Bor.iris
print(Bor.iris)
print(getSelectedAttributes(Bor.iris))

## End(Not run)

https://github.com/chasedehan/BoostARoota


imputeTransdapter 13

imputeTransdapter Impute transdapter

Description

Wraps the importance adapter to accept NAs in input.

Usage

imputeTransdapter(adapter = getImpRfZ)

Arguments

adapter importance adapter to transform.

Value

transformed importance adapter which can be fed into getImp argument of the Boruta function.

Note

An all-NA feature will be converted to all zeroes, which should be ok as a totally non-informative
value with most methods, but it is not universally correct. Ideally, one should avoid having such
features in input altogether.

Examples

## Not run:
set.seed(777)
data(srx)
srx_na<-srx
# Randomly punch 25 holes in the SRX data
holes<-25
holes<-cbind(
sample(nrow(srx),holes,replace=TRUE),
sample(ncol(srx),holes,replace=TRUE)

)
srx_na[holes]<-NA
# Use impute transdapter to mitigate them with internal imputation
Boruta(Y~.,data=srx_na,getImp=imputeTransdapter(getImpRfZ))

## End(Not run)



14 plot.Boruta

plot.Boruta Plot Boruta object

Description

Default plot method for Boruta objects, showing boxplots of attribute importances over run.

Usage

## S3 method for class 'Boruta'
plot(
x,
colCode = c("green", "yellow", "red", "blue"),
sort = TRUE,
whichShadow = c(TRUE, TRUE, TRUE),
col = NULL,
xlab = "Attributes",
ylab = "Importance",
...

)

Arguments

x an object of a class Boruta.

colCode a vector containing colour codes for attribute decisions, respectively Confirmed,
Tentative, Rejected and shadow.

sort controls whether boxplots should be ordered, or left in original order.

whichShadow a logical vector controlling which shadows should be drawn; switches respec-
tively max shadow, mean shadow and min shadow.

col standard col attribute. If given, suppresses effects of colCode.

xlab X axis label that will be passed to boxplot.

ylab Y axis label that will be passed to boxplot.

... additional graphical parameter that will be passed to boxplot.

Value

Invisible copy of x.

Note

If col is given and sort is TRUE, the col will be permuted, so that its order corresponds to attribute
order in ImpHistory.

This function will throw an error when x lacks importance history, i.e., was made with holdHistory
set to FALSE.



plotImpHistory 15

Examples

## Not run:
library(mlbench); data(HouseVotes84)
na.omit(HouseVotes84)->hvo
#Takes some time, so be patient
Boruta(Class~.,data=hvo,doTrace=2)->Bor.hvo
print(Bor.hvo)
plot(Bor.hvo)

## End(Not run)

plotImpHistory Plot Boruta object as importance history

Description

Alternative plot method for Boruta objects, showing matplot of attribute importances over run.

Usage

plotImpHistory(
x,
colCode = c("green", "yellow", "red", "blue"),
col = NULL,
type = "l",
lty = 1,
pch = 0,
xlab = "Classifier run",
ylab = "Importance",
...

)

Arguments

x an object of a class Boruta.

colCode a vector containing colour codes for attribute decisions, respectively Confirmed,
Tentative, Rejected and shadow.

col standard col attribute, passed to matplot. If given, suppresses effects of colCode.

type Plot type that will be passed to matplot.

lty Line type that will be passed to matplot.

pch Point mark type that will be passed to matplot.

xlab X axis label that will be passed to matplot.

ylab Y axis label that will be passed to matplot.

... additional graphical parameter that will be passed to matplot.



16 print.Boruta

Value

Invisible copy of x.

Note

This function will throw an error when x lacks importance history, i.e., was made with holdHistory
set to FALSE.

Examples

## Not run:
library(mlbench); data(Sonar)
#Takes some time, so be patient
Boruta(Class~.,data=Sonar,doTrace=2)->Bor.son
print(Bor.son)
plotImpHistory(Bor.son)

## End(Not run)

print.Boruta Print Boruta object

Description

Print method for the Boruta objects.

Usage

## S3 method for class 'Boruta'
print(x, ...)

Arguments

x an object of a class Boruta.

... additional arguments passed to print.

Value

Invisible copy of x.



srx 17

srx Small redundant XOR data

Description

A synthetic data set with 32 rows corresponding to all combinations of values of five logical fea-
tures, A, B, N1, N2 and N3. The decision Y is equal to A xor B, hence N1–N3 are irrelevant
attributes. The set also contains 3 additional features, A or B (AoB), A and B (AnB) and not A
(nA), which provide a redundant, but still relevant way to reconstruct Y.

Usage

data(srx)

Format

A data frame with 8 predictors, 4 relevant: A, B, AoB, AnB and nA, as well as 3 irrelevant N1, N2
and N3, and decision attribute Y.

Details

This is set is an easy way to demonstrate the difference between all relevant feature selection meth-
ods, which should select all features except N1–N3, and minimal optimal ones, which will probably
ignore most of them.

Source

https://blog.mbq.me/relevance-and-redundancy/

TentativeRoughFix Rough fix of Tentative attributes

Description

In some circumstances (too short Boruta run, unfortunate mixing of shadow attributes, tricky dataset. . . ),
Boruta can leave some attributes Tentative. TentativeRoughFix performs a simplified, weaker test
for judging such attributes.

Usage

TentativeRoughFix(x, averageOver = Inf)

Arguments

x an object of a class Boruta.

averageOver Either number of last importance source runs to average over or Inf for averaging
over the whole Boruta run.

https://blog.mbq.me/relevance-and-redundancy/


18 TentativeRoughFix

Details

Function claims as Confirmed those attributes that have median importance higher than the median
importance of maximal shadow attribute, and the rest as Rejected. Depending of the user choice,
medians for the test are count over last round, all rounds or N last importance source runs.

Value

A Boruta class object with modified finalDecision element. Such object has few additional ele-
ments:

originalDecision

Original finalDecision.

averageOver Copy of averageOver parameter.

Note

This function should be used only when strict decision is highly desired, because this test is much
weaker than Boruta and can lower the confidence of the final result.

x has to be made with holdHistory set to TRUE for this code to run.



Index

∗ datasets
srx, 17

attStats, 2

Boruta, 3, 6–13
boxplot, 14

conditionalTransdapter, 6

decohereTransdapter, 7

getConfirmedFormula, 7
getImpExtra, 8
getImpExtraGini (getImpExtra), 8
getImpExtraRaw (getImpExtra), 8
getImpExtraZ (getImpExtra), 8
getImpFerns, 9
getImpLegacyRf, 9, 11
getImpLegacyRfGini (getImpLegacyRf), 9
getImpLegacyRfRaw (getImpLegacyRf), 9
getImpLegacyRfZ (getImpLegacyRf), 9
getImpRf, 10
getImpRfGini (getImpRf), 10
getImpRfRaw (getImpRf), 10
getImpRfZ (getImpRf), 10
getImpXgboost, 11
getLegacyImpRfRaw (getImpLegacyRf), 9
getNonRejectedFormula

(getConfirmedFormula), 7
getSelectedAttributes, 12

imputeTransdapter, 13

matplot, 15

plot.Boruta, 14
plotImpHistory, 15
print, 16
print.Boruta, 16

randomForest, 9, 10

ranger, 8, 10, 11
rFerns, 9

srx, 17

TentativeRoughFix, 2, 4, 17

xgboost, 11

19


	attStats
	Boruta
	conditionalTransdapter
	decohereTransdapter
	getConfirmedFormula
	getImpExtra
	getImpFerns
	getImpLegacyRf
	getImpRf
	getImpXgboost
	getSelectedAttributes
	imputeTransdapter
	plot.Boruta
	plotImpHistory
	print.Boruta
	srx
	TentativeRoughFix
	Index

