CRAN Package Check Results for Package CAST

Last updated on 2025-12-02 23:50:23 CET.

Flavor Version Tinstall Tcheck Ttotal Status Flags
r-devel-linux-x86_64-debian-clang 1.0.3 18.93 658.01 676.94 OK
r-devel-linux-x86_64-debian-gcc 1.0.3 11.76 452.18 463.94 OK
r-devel-linux-x86_64-fedora-clang 1.0.3 43.00 1041.95 1084.95 OK
r-devel-linux-x86_64-fedora-gcc 1.0.3 51.00 1075.55 1126.55 OK
r-devel-windows-x86_64 1.0.3 23.00 863.00 886.00 ERROR
r-patched-linux-x86_64 1.0.3 19.20 542.39 561.59 ERROR
r-release-linux-x86_64 1.0.3 17.28 641.45 658.73 OK
r-release-macos-arm64 1.0.3 OK
r-release-macos-x86_64 1.0.3 15.00 680.00 695.00 OK
r-release-windows-x86_64 1.0.3 19.00 616.00 635.00 OK
r-oldrel-macos-arm64 1.0.3 OK
r-oldrel-macos-x86_64 1.0.3 12.00 393.00 405.00 OK
r-oldrel-windows-x86_64 1.0.3 27.00 831.00 858.00 ERROR

Additional issues

noLD

Check Details

Version: 1.0.3
Check: re-building of vignette outputs
Result: ERROR Error(s) in re-building vignettes: --- re-building 'cast01-CAST-intro.Rmd' using rmarkdown trying URL 'https://geodata.ucdavis.edu/climate/worldclim/2_1/base/wc2.1_10m_bio.zip' Content type 'application/zip' length 49869449 bytes (47.6 MB) ================================================== downloaded 47.6 MB trying URL 'https://geodata.ucdavis.edu/climate/worldclim/2_1/base/wc2.1_10m_elev.zip' Content type 'application/zip' length 1332437 bytes (1.3 MB) ================================================== downloaded 1.3 MB --- finished re-building 'cast01-CAST-intro.Rmd' --- re-building 'cast02-plotgeodist.Rmd' using rmarkdown Quitting from cast02-plotgeodist.Rmd:243-248 [unnamed-chunk-17] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ <error/rlang_error> Error in `names(predictors_global) <- c(paste0("bio_", 1:19))`: ! attempt to set an attribute on NULL ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Error: processing vignette 'cast02-plotgeodist.Rmd' failed with diagnostics: attempt to set an attribute on NULL --- failed re-building 'cast02-plotgeodist.Rmd' --- re-building 'cast03-CV.Rmd' using rmarkdown --- finished re-building 'cast03-CV.Rmd' --- re-building 'cast04-AOA-tutorial.Rmd' using rmarkdown --- finished re-building 'cast04-AOA-tutorial.Rmd' --- re-building 'cast05-parallel.Rmd' using rmarkdown --- finished re-building 'cast05-parallel.Rmd' SUMMARY: processing the following file failed: 'cast02-plotgeodist.Rmd' Error: Vignette re-building failed. Execution halted Flavor: r-devel-windows-x86_64

Version: 1.0.3
Check: re-building of vignette outputs
Result: ERROR Error(s) in re-building vignettes: ... --- re-building ‘cast01-CAST-intro.Rmd’ using rmarkdown CAST package:CAST R Documentation '_<08>c_<08>a_<08>r_<08>e_<08>t' _<08>A_<08>p_<08>p_<08>l_<08>i_<08>c_<08>a_<08>t_<08>i_<08>o_<08>n_<08>s _<08>f_<08>o_<08>r _<08>S_<08>p_<08>a_<08>t_<08>i_<08>a_<08>l-_<08>T_<08>e_<08>m_<08>p_<08>o_<08>r_<08>a_<08>l _<08>M_<08>o_<08>d_<08>e_<08>l_<08>s _<08>D_<08>e_<08>s_<08>c_<08>r_<08>i_<08>p_<08>t_<08>i_<08>o_<08>n: Supporting functionality to run 'caret' with spatial or spatial-temporal data. 'caret' is a frequently used package for model training and prediction using machine learning. CAST includes functions to improve spatial-temporal modelling tasks using 'caret'. It includes the newly suggested 'Nearest neighbor distance matching' cross-validation to estimate the performance of spatial prediction models and allows for spatial variable selection to selects suitable predictor variables in view to their contribution to the spatial model performance. CAST further includes functionality to estimate the (spatial) area of applicability of prediction models by analysing the similarity between new data and training data. Methods are described in Meyer et al. (2018); Meyer et al. (2019); Meyer and Pebesma (2021); Milà et al. (2022); Meyer and Pebesma (2022); Linnenbrink et al. (2023). The package is described in detail in Meyer et al. (2024). _<08>D_<08>e_<08>t_<08>a_<08>i_<08>l_<08>s: 'caret' Applications for Spatio-Temporal models _<08>A_<08>u_<08>t_<08>h_<08>o_<08>r(_<08>s): Hanna Meyer, Carles Milà, Marvin Ludwig, Jan Linnenbrink, Fabian Schumacher _<08>R_<08>e_<08>f_<08>e_<08>r_<08>e_<08>n_<08>c_<08>e_<08>s: • Meyer, H., Ludwig, L., Milà, C., Linnenbrink, J., Schumacher, F. (2024): The CAST package for training and assessment of spatial prediction models in R. arXiv, https://doi.org/10.48550/arXiv.2404.06978. • Linnenbrink, J., Milà, C., Ludwig, M., and Meyer, H.: kNNDM: k-fold Nearest Neighbour Distance Matching Cross-Validation for map accuracy estimation, EGUsphere [preprint], https://doi.org/10.5194/egusphere-2023-1308, 2023. • Milà, C., Mateu, J., Pebesma, E., Meyer, H. (2022): Nearest Neighbour Distance Matching Leave-One-Out Cross-Validation for map validation. Methods in Ecology and Evolution 00, 1– 13. • Meyer, H., Pebesma, E. (2022): Machine learning-based global maps of ecological variables and the challenge of assessing them. Nature Communications. 13. • Meyer, H., Pebesma, E. (2021): Predicting into unknown space? Estimating the area of applicability of spatial prediction models. Methods in Ecology and Evolution. 12, 1620– 1633. • Meyer, H., Reudenbach, C., Wöllauer, S., Nauss, T. (2019): Importance of spatial predictor variable selection in machine learning applications - Moving from data reproduction to spatial prediction. Ecological Modelling. 411, 108815. • Meyer, H., Reudenbach, C., Hengl, T., Katurji, M., Nauß, T. (2018): Improving performance of spatio-temporal machine learning models using forward feature selection and target-oriented validation. Environmental Modelling & Software 101: 1-9. _<08>S_<08>e_<08>e _<08>A_<08>l_<08>s_<08>o: Useful links: • <https://github.com/HannaMeyer/CAST> • <https://hannameyer.github.io/CAST/> • Report bugs at <https://github.com/HannaMeyer/CAST/issues/> Quitting from cast01-CAST-intro.Rmd:51-57 [unnamed-chunk-3] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ <error/rlang_error> Error in `library()`: ! there is no package called 'tmap' --- Backtrace: ▆ 1. └─base::library(tmap) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Error: processing vignette 'cast01-CAST-intro.Rmd' failed with diagnostics: there is no package called 'tmap' --- failed re-building ‘cast01-CAST-intro.Rmd’ --- re-building ‘cast02-plotgeodist.Rmd’ using rmarkdown trying URL 'https://geodata.ucdavis.edu/climate/worldclim/2_1/base/wc2.1_10m_bio.zip' Content type 'application/zip' length 49869449 bytes (47.6 MB) ================================================== downloaded 47.6 MB [WARNING] Deprecated: --highlight-style. Use --syntax-highlighting instead. --- finished re-building ‘cast02-plotgeodist.Rmd’ --- re-building ‘cast03-CV.Rmd’ using rmarkdown [WARNING] Deprecated: --highlight-style. Use --syntax-highlighting instead. --- finished re-building ‘cast03-CV.Rmd’ --- re-building ‘cast04-AOA-tutorial.Rmd’ using rmarkdown [WARNING] Deprecated: --highlight-style. Use --syntax-highlighting instead. --- finished re-building ‘cast04-AOA-tutorial.Rmd’ --- re-building ‘cast05-parallel.Rmd’ using rmarkdown [WARNING] Deprecated: --highlight-style. Use --syntax-highlighting instead. --- finished re-building ‘cast05-parallel.Rmd’ SUMMARY: processing the following file failed: ‘cast01-CAST-intro.Rmd’ Error: Vignette re-building failed. Execution halted Flavor: r-patched-linux-x86_64

Version: 1.0.3
Check: tests
Result: ERROR Running 'testthat.R' [209s] Running the tests in 'tests/testthat.R' failed. Complete output: > library(testthat) > library(CAST) > > test_check("CAST") Loading required package: ggplot2 Loading required package: lattice note: variables were not weighted either because no weights or model were given, no variable importance could be retrieved from the given model, or the model has a single feature. Check caret::varImp(model) note: No model and no CV folds were given. The DI threshold is therefore based on all training data note: variables were not weighted either because no weights or model were given, no variable importance could be retrieved from the given model, or the model has a single feature. Check caret::varImp(model) note: No model and no CV folds were given. The DI threshold is therefore based on all training data [1] "model using Sepal.Length,Sepal.Width will be trained now..." note: only 1 unique complexity parameters in default grid. Truncating the grid to 1 . [1] "maximum number of models that still need to be trained: 8" [1] "model using Sepal.Length,Petal.Length will be trained now..." note: only 1 unique complexity parameters in default grid. Truncating the grid to 1 . [1] "maximum number of models that still need to be trained: 7" [1] "model using Sepal.Length,Petal.Width will be trained now..." note: only 1 unique complexity parameters in default grid. Truncating the grid to 1 . [1] "maximum number of models that still need to be trained: 6" [1] "model using Sepal.Width,Petal.Length will be trained now..." note: only 1 unique complexity parameters in default grid. Truncating the grid to 1 . [1] "maximum number of models that still need to be trained: 5" [1] "model using Sepal.Width,Petal.Width will be trained now..." note: only 1 unique complexity parameters in default grid. Truncating the grid to 1 . [1] "maximum number of models that still need to be trained: 4" [1] "model using Petal.Length,Petal.Width will be trained now..." note: only 1 unique complexity parameters in default grid. Truncating the grid to 1 . [1] "maximum number of models that still need to be trained: 3" [1] "vars selected: Petal.Length,Petal.Width with Accuracy 0.953" [1] "model using additional variable Sepal.Length will be trained now..." note: only 2 unique complexity parameters in default grid. Truncating the grid to 2 . [1] "maximum number of models that still need to be trained: 2" [1] "model using additional variable Sepal.Width will be trained now..." note: only 2 unique complexity parameters in default grid. Truncating the grid to 2 . [1] "maximum number of models that still need to be trained: 1" [1] "vars selected: Petal.Length,Petal.Width,Sepal.Width with Accuracy 0.954" [1] "model using additional variable Sepal.Length will be trained now..." [1] "maximum number of models that still need to be trained: 0" [1] "vars selected: Petal.Length,Petal.Width,Sepal.Width with Accuracy 0.954" Spherical geometry (s2) switched off Spherical geometry (s2) switched on Spherical geometry (s2) switched off Saving _problems/test-geodist-38.R Spherical geometry (s2) switched on Saving _problems/test-geodist-85.R Saving _problems/test-geodist-107.R Saving _problems/test-geodist-125.R Saving _problems/test-geodist-145.R Spherical geometry (s2) switched off Spherical geometry (s2) switched on Saving _problems/test-geodist-188.R variable(s) 'fct' is (are) treated as categorical variables Spherical geometry (s2) switched off Saving _problems/test-geodist-242.R time variable that has been selected: Date time variable that has been selected: Date time variable that has been selected: Date note: only 2 unique complexity parameters in default grid. Truncating the grid to 2 . note: only 2 unique complexity parameters in default grid. Truncating the grid to 2 . Spherical geometry (s2) switched on although coordinates are longitude/latitude, st_sample assumes that they are planar although coordinates are longitude/latitude, st_sample assumes that they are planar 1000 prediction points are sampled from the modeldomain Gij <= Gj; a random CV assignment is returned 1000 prediction points are sampled from the modeldomain Gij <= Gj; a random CV assignment is returned 1000 prediction points are sampled from the modeldomain predictor values are extracted for prediction points Gij <= Gj; a random CV assignment is returned 1000 prediction points are sampled from the modeldomain predictor values are extracted for prediction points Gij <= Gj; a random CV assignment is returned 1000 prediction points are sampled from the modeldomain although coordinates are longitude/latitude, st_sample assumes that they are planar predictor values are extracted for prediction points variable(s) 'fct' is (are) treated as categorical variables some prediction points contain NAs, which will be removed Gij <= Gj; a random CV assignment is returned 1000 prediction points are sampled from the modeldomain predictor values are extracted for prediction points variable(s) 'fct' is (are) treated as categorical variables 1000 prediction points are sampled from the modeldomain predictor values are extracted for prediction points variable(s) 'fct' is (are) treated as categorical variables 1000 prediction points are sampled from the modeldomain although coordinates are longitude/latitude, st_sample assumes that they are planar predictor values are extracted for prediction points 1000 prediction points are sampled from the modeldomain predictor values are extracted for prediction points 1000 prediction points are sampled from the modeldomain predictor values are extracted for prediction points 1000 prediction points are sampled from the modeldomain 1000 prediction points are sampled from the modeldomain 1000 prediction points are sampled from the modeldomain 1000 prediction points are sampled from the modeldomain [ FAIL 7 | WARN 11 | SKIP 10 | PASS 100 ] ══ Skipped tests (10) ══════════════════════════════════════════════════════════ • On CRAN (10): 'test-errorProfiles.R:3:3', 'test-errorProfiles.R:36:3', 'test-errorProfiles.R:67:3', 'test-fss.R:3:3', 'test-fss.R:27:3', 'test-fss.R:47:3', 'test-fss.R:70:3', 'test-fss.R:120:5', 'test-fss.R:135:5', 'test-fss.R:152:5' ══ Failed tests ════════════════════════════════════════════════════════════════ ── Error ('test-geodist.R:34:3'): geodist works with points and polygon in feature space ── Error: [project] cannot get output boundaries for the target crs Backtrace: ▆ 1. └─CAST::geodist(...) at test-geodist.R:34:3 2. └─CAST:::sampleFromArea(...) 3. ├─terra::project(modeldomain, "epsg:4326") 4. └─terra::project(modeldomain, "epsg:4326") 5. └─terra (local) .local(x, ...) 6. └─terra:::messages(x, "project") 7. └─terra:::error(f, x@pntr$getError()) ── Error ('test-geodist.R:84:3'): geodist works with points and preddata in feature space ── Error: [rast] empty srs Backtrace: ▆ 1. ├─terra::rast(...) at test-geodist.R:84:3 2. └─terra::rast(...) 3. └─terra (local) .local(x = x, ...) 4. └─terra:::new_rast(...) 5. └─terra:::messages(r, "rast") 6. └─terra:::error(f, x@pntr$getError()) ── Error ('test-geodist.R:106:3'): geodist works with points and raster in geographic space ── Error: [rast] empty srs Backtrace: ▆ 1. ├─terra::rast(...) at test-geodist.R:106:3 2. └─terra::rast(...) 3. └─terra (local) .local(x = x, ...) 4. └─terra:::new_rast(...) 5. └─terra:::messages(r, "rast") 6. └─terra:::error(f, x@pntr$getError()) ── Error ('test-geodist.R:124:3'): geodist works with points and raster in feature space ── Error: [rast] empty srs Backtrace: ▆ 1. ├─terra::rast(...) at test-geodist.R:124:3 2. └─terra::rast(...) 3. └─terra (local) .local(x = x, ...) 4. └─terra:::new_rast(...) 5. └─terra:::messages(r, "rast") 6. └─terra:::error(f, x@pntr$getError()) ── Error ('test-geodist.R:143:3'): geodist works with points and stars raster in geographic space ── Error: [rast] empty srs Backtrace: ▆ 1. ├─stars::st_as_stars(...) at test-geodist.R:143:3 2. ├─terra::rast(...) 3. └─terra::rast(...) 4. └─terra (local) .local(x = x, ...) 5. └─terra:::new_rast(...) 6. └─terra:::messages(r, "rast") 7. └─terra:::error(f, x@pntr$getError()) ── Error ('test-geodist.R:187:3'): geodist works with points and test data in feature space ── Error: [rast] empty srs Backtrace: ▆ 1. ├─terra::rast(...) at test-geodist.R:187:3 2. └─terra::rast(...) 3. └─terra (local) .local(x = x, ...) 4. └─terra:::new_rast(...) 5. └─terra:::messages(r, "rast") 6. └─terra:::error(f, x@pntr$getError()) ── Error ('test-geodist.R:238:3'): geodist works with categorical variables in feature space ── Error: [project] cannot get output boundaries for the target crs Backtrace: ▆ 1. └─CAST::geodist(...) at test-geodist.R:238:3 2. └─CAST:::sampleFromArea(...) 3. ├─terra::project(modeldomain, "epsg:4326", method = "near") 4. └─terra::project(modeldomain, "epsg:4326", method = "near") 5. └─terra (local) .local(x, ...) 6. └─terra:::messages(x, "project") 7. └─terra:::error(f, x@pntr$getError()) [ FAIL 7 | WARN 11 | SKIP 10 | PASS 100 ] Error: ! Test failures. Execution halted Flavor: r-oldrel-windows-x86_64

Version: 1.0.3
Check: re-building of vignette outputs
Result: ERROR Error(s) in re-building vignettes: --- re-building 'cast01-CAST-intro.Rmd' using rmarkdown trying URL 'https://geodata.ucdavis.edu/climate/worldclim/2_1/base/wc2.1_10m_bio.zip' Content type 'application/zip' length 49869449 bytes (47.6 MB) ================================================== downloaded 47.6 MB trying URL 'https://geodata.ucdavis.edu/climate/worldclim/2_1/base/wc2.1_10m_elev.zip' Content type 'application/zip' length 1332437 bytes (1.3 MB) ================================================== downloaded 1.3 MB --- finished re-building 'cast01-CAST-intro.Rmd' --- re-building 'cast02-plotgeodist.Rmd' using rmarkdown trying URL 'https://geodata.ucdavis.edu/climate/worldclim/2_1/base/wc2.1_10m_bio.zip' Content type 'application/zip' length 49869449 bytes (47.6 MB) ================================================== downloaded 47.6 MB Quitting from cast02-plotgeodist.Rmd:252-269 [unnamed-chunk-18] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ <error/rlang_error> Error: ! [project] cannot get output boundaries for the target crs --- Backtrace: ▆ 1. └─CAST::geodist(...) 2. └─CAST:::sampleFromArea(...) 3. ├─terra::project(modeldomain, "epsg:4326") 4. └─terra::project(modeldomain, "epsg:4326") 5. └─terra (local) .local(x, ...) 6. └─terra:::messages(x, "project") 7. └─terra:::error(f, x@pntr$getError()) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Error: processing vignette 'cast02-plotgeodist.Rmd' failed with diagnostics: [project] cannot get output boundaries for the target crs --- failed re-building 'cast02-plotgeodist.Rmd' --- re-building 'cast03-CV.Rmd' using rmarkdown --- finished re-building 'cast03-CV.Rmd' --- re-building 'cast04-AOA-tutorial.Rmd' using rmarkdown --- finished re-building 'cast04-AOA-tutorial.Rmd' --- re-building 'cast05-parallel.Rmd' using rmarkdown --- finished re-building 'cast05-parallel.Rmd' SUMMARY: processing the following file failed: 'cast02-plotgeodist.Rmd' Error: Vignette re-building failed. Execution halted Flavor: r-oldrel-windows-x86_64